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Characterization of the transcriptional regulatory network of the
normal cell cycle is essential for understanding the perturbations
that lead to cancer. However, the complete set of cycling genes in
primary cells has not yet been identified. Here, we report the
results of genome-wide expression profiling experiments on syn-
chronized primary human foreskin fibroblasts across the cell cycle.
Using a combined experimental and computational approach to
deconvolve measured expression values into ‘‘single-cell’’ expres-
sion profiles, we were able to overcome the limitations inherent in
synchronizing nontransformed mammalian cells. This allowed us
to identify 480 periodically expressed genes in primary human
foreskin fibroblasts. Analysis of the reconstructed primary cell
profiles and comparison with published expression datasets from
synchronized transformed cells reveals a large number of genes
that cycle exclusively in primary cells. This conclusion was sup-
ported by both bioinformatic analysis and experiments performed
on other cell types. We suggest that this approach will help
pinpoint genetic elements contributing to normal cell growth and
cellular transformation.

deconvolution � expression profile

T ight regulation of the cell cycle is necessary for the proper
growth and development of all organisms. Dysregulation of

cell cycle controls leads to proliferative diseases, most notably
cancer. One approach to understanding basic cell cycle processes
and their deregulation in cancer has been genome-wide char-
acterization of the cell cycle transcriptional program (1). In these
microarray experiments, the RNA levels of every gene is mea-
sured in a synchronized cell population at multiple time points.
Synchronization is achieved by releasing cells from a cell cycle
arrest. This approach was carried out initially to characterize the
yeast cell cycle, and, subsequently, it was applied to examine the
cell cycle in multiple organisms (reviewed in ref. 2).

Although arrest methods were effective for characterizing
cycling genes in a number of species (3–7), they did not lead to
complete synchronization, even for yeast cells (8–10). A number
of methods were introduced for resynchronizing yeast cells by
either matching the profiles for the first and second cycle for
each gene (9) or by combining expression and bud count
information to reconstruct the expression profile (8). These
methods were shown to improve (the already good) yeast cell
cycle expression data. However, these methods cannot be di-
rectly applied to mammalian cells because of two major differ-
ences between yeast and mammalian cells: (i) normal diploid
mammalian cells lose their synchronization relatively soon after
release of growth arrest (11) and (ii) only 50–70% of wild-type
mammalian cells reenter the cell cycle after release from arrest
(12). The large percentage of arrested cells and loss of synchro-

nization means that expression values represent a mixed popu-
lation of cells, which introduces high background noise that
confounds differentiation between genuine cell cycle-regulated
genes and randomly fluctuating genes. This may have contrib-
uted to the problem encountered in a study that used synchro-
nized human fibroblasts for the identification of cycling genes
(13, 14).

So far, there have been few attempts to tackle this problem.
CheckSum (15), a quality control method for time series expres-
sion data, can detect cases in which genes are missed because of
synchronization loss. However, CheckSum cannot reconstruct
the profiles of the missed genes, and so it cannot recover the
cyclic expression patterns in primary cells. A different approach
to overcome these difficulties was introduced by Whitfield et al.
(16), who used a transformed cell line (HeLa), which is easier to
synchronize, to identify cycling genes. However, these cells may
not display the normal pattern of gene expression seen in
nontransformed human cell types but rather reflect the prolif-
erative nature of transformed cells in culture.

In light of these limitations, we do not have a complete gene
expression dataset of the normal human cell cycle. To overcome
this problem, we developed a combined experimental and
computational approach that addresses the limitations of mam-
malian cell cycle experiments and leads to the identification of
true cell cycle expression profiles from ‘‘noisy’’ data. Our
approach uses information about the degree of synchronization
of the culture and the percentage of cells reentering the cell cycle
(obtained empirically by FACS analysis) to deconvolve the
expression profiles of genes. Cycling genes are identified by using
these corrected profiles. We reconstructed cell cycle profiles by
carrying out new microarray experiments, using (partially) syn-
chronized primary human foreskin fibroblasts. Analysis of the
reconstructed profiles and comparison with published expres-
sion datasets from transformed cells reveals a large number of
genes that cycle in primary cells and not in transformed cells.
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This list contains both known and new cell cycle genes. We
anticipate that further study of the genes cycling specifically in
normal cells will advance understanding of both the normal cell
cycle and mechanisms leading to cancer-associated deregulation.

Results
Cell Synchronization and FACS Analysis. We initiated this study with
the knowledge that complete synchronization of primary cells is
difficult to achieve. Early passage human foreskin fibroblasts
were synchronized by two methods, serum starvation and thy-
midine block, arresting the cells at G0/G1 and G1/S respectively.
Flow cytometry (FACS) analysis shows the limited synchrony
that can be achieved with these cells (Fig. 1 a and b); for example,
after serum starvation, �50% of the cells fail to cycle and remain
in the G0/G1 phase of the cell cycle. This information is used
when deconvolving the expression profiles.

In Silico Synchronization. Microarray experiments measure the
average RNA level of each gene in a population of cells, and thus
are most accurate when using a homogenous population of cells.
Partial synchronization causes a severe distortion of microarray
results (14). To overcome this problem, we developed a com-
putational approach that takes advantage of the FACS data
collected at various time points during the experiment to de-
convolve the expression data. The deconvolution algorithm
infers gene expression values for the ideal ‘‘average single cell’’;
it does this by using a model learned from the empirically
observed distribution of cells and measured expression values
recorded at each time point (Fig. 2a). The algorithm is based on
the assumption that after release from arrest, each cell proceeds
according to its own internal clock. Some of the cells do not
emerge from the arrested state, and the remaining cells proceed
along the cell cycle at their own rate that, assuming a normal
distribution, can be inferred from the FACS data. The inferred
‘‘synchronization loss model’’ can be applied to deconvolve the
expression data to generate ‘‘single-cell’’ gene expression pro-
files. See Materials and Methods and supporting information (SI)
Methods for complete details. The synchronization loss model

allows estimation of the percentage of cells at each phase at a
given moment. The accuracy of this estimation was confirmed by
comparing the time until mitotic entry predicted by our model
with direct measurements of mitosis made by using time-lapse
cinematography. A very strong agreement is observed between
the predicted and observed cell division times (Fig. 2b).

Identifying Cycling Genes. RNA was isolated from synchronized
foreskin fibroblast cells at 2-h intervals after their release from
serum starvation or thymidine block arrest. RNA was also
isolated from unsynchronized cultures to generate a reference
dataset. RNA expression levels were determined by using Af-
fymetrix microarrays U133A 2.0. As mentioned above, measured
expression values from the synchronized cultures were corrected
to generate deconvolved expression profiles. The resulting pro-
files represent single-cell expression values for each gene allow-
ing us to identify cycling genes that cannot be identified when
relying on uncorrected measured values. For example, a well
known cycling gene, BIRC5, shows only a small f luctuation in its
RNA level in the raw data, whereas, after the deconvolution
process, the cyclical nature of this gene is obvious (Fig. 2c).

Applying a cyclicity score to the data (Materials and Methods)
allowed identification of 480 cycling genes. Three lines of
evidence support our definition of cycling genes. First, most of
the known cycling genes are found among these 480 genes (SI
Appendix). Second, applying a gene ontology (GO) annotation
analysis to the list revealed a high enrichment for cell cycle
related categories such as DNA replication, DNA repair, DNA
metabolism, mitosis, cell division, and cell cycle regulation (SI
Table 2). Finally, we confirmed the periodic expression of 10 of
the identified cell cycle genes, using RT-PCR (SI Appendix).

In addition to genes known to be cycling, the list of 480 cycling
genes also includes many genes that were not identified as such
in a genome-wide study focused on transformed cells (16), thus
vastly expanding the view of cell cycle transcriptional regulation.
Assignment of each gene to a cell cycle stage reveals that, as
suggested in refs. 4, 7, and 16, the majority of cycling genes are
transcribed when they are needed most during the cell cycle (SI
Table 3 and SI Appendix).

Categorizing Cycling Genes. The study in ref. 16, using the cervical
carcinoma cell line HeLa, identified �850 genes that show
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Fig. 1. Cell cycle synchronization. The cell cycle distribution of cells synchro-
nized by (a) serum starvation (one cycle) or (b) thymidine block (two cycles)
was monitored by FACS. The number of cells (arbitrary units) is plotted against
DNA content for time points after release. The percentage of cells in G1, S, and
G2 stages of the cell cycle at each time point is shown.

0

5

10

15

20

25

2 5 8 12 15 18 22 25 28 32

 Observed 
 Predicted 

Time (h)

P
er

ce
nt

ag
e 

of
 c

el
ls

b c

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35

Raw data
Deconvolved data

Lo
g 

2
 r

at
io

Time (h)

t

a

ui

Fig. 2. Data deconvolution. (a) Due to loss of synchronization, cells (gray
dots) are distributed around the actual time (t). Using a synchronization loss
model, this distribution can be determined. The actual measurement at time
t is an average of the expression values of the gene (black dot) in all cells and
is thus not an accurate representation of the single-cell expression value for
this gene at time t. Using deconvolution on data from multiple time points, we
can recover the underlying expression pattern for gene i (ui). (b) A diagram
depicting the percentage of cells entering mitosis at each time point after
release from the thymidine block as determined by time-lapse cinematogra-
phy (gray) and as predicted by the synchronization loss model from the FACS
data (black). Note the high correlation between the two distributions (R �
0.76, ANOVA P � 10�4). (c) Expression profile of the BIRC5 gene as measured
by microarray analysis of the thymidine block experiment. Raw data (gray
triangles) and deconvolved data (black squares).
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periodic expression across the cell cycle. Among these 850 genes,
550 were measured by our platform, and a significant portion of
them (�40%, P � 0) were identified as cycling in our study as
well. To explore the differences between the cell cycles of HeLa
and foreskin fibroblast cells as monitored by the two studies, we
reanalyzed the Whitfield et al. (16) dataset, using the same
criteria used in our data analysis. A gene was defined as cycling
if it passed a threshold in at least two of the four datasets
analyzed (two from each study; see Materials and Methods).
Using randomization analysis, we determined that the false
discovery rate (FDR) using this criterion was �7% (SI Appen-
dix). This integrated analysis of both studies resulted in three
groups of genes; genes cycling in both primary foreskin fibro-
blasts and HeLa datasets [‘‘common’’ (362 genes)], genes cycling
only in primary foreskin fibroblasts [‘‘primary FF’’ (118 genes)],
and genes cycling only in the HeLa dataset [‘‘HeLa’’ (119 genes)]
(Fig. 3a).

Characterizing Cycling Gene Groups. To distinguish potential dif-
ferences unique to each of the three gene groups, we analyzed
their members for GO annotation and transcription factor
binding motifs. As expected, the common set was highly enriched
for the major cell cycle categories. Similar enrichment, although
to a lesser extent, was found in the primary FF set, whereas there
was no enrichment in the HeLa set of genes (Fig. 3b). A similar
pattern was observed for binding sites of known cell cycle
regulators (17). The common and primary FF sets of genes were
enriched for the binding sites of E2F transcription factor (E2F)
(22%; P � 10�12 and P � 0.01, respectively), nuclear factor Y
(NFY) (39%; P � 10�19 and P � 0.02, respectively), and nuclear
respiratory factor 1 (NRF1) (36%; P � 0.01 common only). In
contrast, the HeLa set of genes were not enriched for motifs of
cell cycle regulators. Furthermore, analysis of each group’s
members, using ChIP on chip data for the transcription factors
E2F4, p130, p107 (18), and NFY-B (19), revealed similar find-
ings. Although high percentages of the cycling genes in both
common and primary FF datasets are bound by at least one of
these factors (27%; P � 10�63 and 24%; P � 10�15, respectively),
only a small portion (5%; P � 0.22) of the genes identified in the
HeLa set are bound by these factors.

Many cell cycle genes (such as DNA replication genes) are
expressed only in proliferating cells, and therefore it is expected
that the average expression of cycling genes should be higher in
proliferating cells than in arrested cells. To characterize further
the cycling gene groups, we used published expression profiles of
proliferating and arrested primary fibroblasts (IMR-90) to com-
pare expression levels of the three groups of cycling genes (20).
We found that the average expression level of genes in the
common and the primary FF groups is significantly higher in
primary proliferating cells than in arrested cells (P � 10�59 and
P � 10�18, respectively). In contrast, the average expression level
of genes in the HeLa group is not significantly higher in
proliferating versus arrested cells (P � 0.47; Fig. 4a). Similar
results (common, P � 10�20; primary FF, P � 10�7; and HeLa,
P � 0.49), were obtained in a reciprocal experiment in which
oncogene-induced senescence was bypassed by the transfection
of E6/E7 viral proteins (21) (Fig. 4b). The same pattern was also
observed in data derived from normal epithelial cells (Fig. 4c and
SI Fig. 6). This suggests that the origin of the cells used for the
identification of cycling genes (epithelial versus fibroblastic) is
not the main cause for the different set of genes identified in each
experiment.

Further support for these results was obtained from the
analysis of the average expression level of genes, using a panel
of 12 normal tissues (22). For each tissue, we compared the
average expression level of each set of cycling genes to the
average expression level of all genes on the array. We found that
the expression levels of cycling genes in the common and primary

FF groups are significantly low in most tissues and are expressed
at considerably higher levels only in the thymus and bone marrow
samples, which are the only two tissues in our analysis that
contain a high percentage of proliferating cells. In sharp con-
trast, the genes of the HeLa group do not exhibit this distinctive
pattern of tissue expression (Fig. 4d). These results are consistent
with the conclusion that our method accurately identifies cycling
genes in primary cells.

The Primary FF Group Contains Cycling Genes Unique to Normal Cells.
It is possible that some of the genes identified as cycling in our
dataset were not identified as such in the Whitfield study (16),
owing to differences in experimental procedures. However, we
propose that some of these genes are cycling only in normal cells
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Fig. 3. Characterization of three cycling gene groups. (a) Venn diagram
depicting the overlap between cycling genes identified in Whitfield’s (16) and
our datasets. The numbers in each section of the diagram reflect the number
of genes in each group (see SI Table 5 for a list of all of the cycling genes). (b)
Expression data for each group of cycling genes (log ratio to unsynchronized
culture) is represented by color, using a heat map, where red indicates induced
expression and green indicates repressed expression. For the HeLa cells, we
used data published in ref. 16 of the Thy-Thy 3 (T-T3) and Thy-Noc (T-N)
experiments. For the primary FF cells, we used the deconvolved expression
data for the serum starvation (SS) and thymidine block (T) experiments. The
genes within a group have been ordered (vertically) according to their as-
signed cell cycle stage, which is indicated on the right of the heat maps.
Enrichment analysis of each group’s members for functional cell cycle GO
categories is represented by rectangles next to that group (for the full analysis,
see SI Table 2). The length of a rectangle depicts the percentage of cycling
genes that fall into the category (2.7–27%), and the color depicts the signif-
icance of the enrichment. The significance levels (in parentheses) were cor-
rected for multiple hypotheses (see Materials and Methods) and are indicated
by three levels of gray color for P � 0.05, �0.005 and �0.001. White rectangles
indicate no enrichment (P � 0.05).
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and not in transformed cells. We explored this supposition as
follows. Recent analyses of cancer expression profiles have
facilitated classification of genes whose expression correlates
with proliferation rates (‘‘tumor proliferation clusters’’) (23, 24).
These clusters were shown to be highly enriched for genes
expressed periodically in HeLa cells (16). Similar analysis of our
groups of cycling genes reveals that the common group is
significantly more populated with genes from the tumor prolif-
erating clusters than the primary FF group (P � 0.007, Fisher’s
exact test). In sharp contrast, when comparing our groups of
genes to a normal proliferation cluster (25), there is no differ-
ence in enrichment between the primary FF and common group
(P � 0.5, Fisher’s exact test).

To further investigate this, we analyzed published expression
data from various normal and transformed cells. We compared
the average gene expression levels of each of our gene groups
between normal fibroblasts and cancer cells of fibroblast origin
(fibrosarcoma) (26). The gene expression profiles of the com-
mon and the primary FF groups differ strikingly from one
another. Whereas the genes from the common group are ex-
pressed at significantly higher levels in cancer cells than in
normal cells (P � 0.0007), the expression of genes from the
primary FF group is the same in both cell types (P � 0.45; Fig.
5a). The same result was obtained when using a large dataset of
normal and transformed tissues (27). Notably, when considering
normal cells, the primary FF genes and the common genes have
similar expression behavior. In contrast, in cancer cells these
gene groups diverge significantly in their expression patterns
(P � 0.0002; Fig. 5b). Analysis of additional datasets from
normal tissues, cancer tissues, and transformed cell lines reveals
similar results (SI Figs. 6–8). These analyses support our premise
that the primary FF group contains some genes that are cycling
exclusively in normal cells and are dysregulated in transformed
cells.

To determine whether our conclusion that primary FF genes
are only cycling in normal cells is relevant to other cell types, we
have measured the RNA level of several such genes in another

type of primary cells [human umbilical vein endothelial cells
(HUVEC)] and in a fibrosarcoma cell line (HT1080). We
observed a sharp difference between the two types of cells,
whereas in the primary cells, the RNA levels differ at different
cell cycle stages, in the cancer cells, only minor changes were
observed (Fig. 5 c and d).

Discussion
To date, technical challenges underlying synchronization of
mammalian cells have hampered an accurate description of cell
cycle-regulated genes in normal human tissue. We have devel-
oped a computational method that overcomes synchrony diffi-
culties in silico and demonstrate its utility by generating a
comprehensive list of 480 genes that show periodic expression
across the human cell cycle of primary foreskin fibroblasts.
Comparison with a previous dataset identified a list of 118 genes
that were detected to be cycling only in normal fibroblasts. This
list contains several genes that are dysregulated in transformed
cells.

Reanalysis of the HeLa cell cycle data (16), using the same
criteria applied to our data, allowed us to perform a comparison
between the cycling genes identified in each experiment. Cycling
genes were categorized into three groups, common, primary FF,
and HeLa (Fig. 3), and we used various published datasets to
investigate the characteristics of these three cycling gene groups
(Figs. 3 and 4). We concluded from these analyses that the
common and the primary FF categories contain ‘‘genuine’’ cell
cycle genes, whereas the genes identified as cycling only in
Whitfield’s data (16) (the HeLa group) most likely are not
cycling. Thus, it seems that an additional benefit of our analysis
is the elimination from the published list of cycling genes many
genes whose cyclicity may be due to other cell perturbations and
not due to the normal cell cycle.

Further support for our claim that our approach is successful
in improving the identification of cycling genes comes from
analysis of interspecies conservation. A recent comparison of cell
cycle experiments in budding yeast, fission yeast, and human
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identified a conserved core set of cycling genes (28). Analysis of
the conservation in the common set revealed that it is far more
enriched for core cycling genes than the original Whitfield list
(16) (SI Appendix).

Why were the primary FF genes not identified as cycling in the
HeLa dataset? The causes may be differences between the
studies, such as different synchronization methods, microarray
platforms, and technical variations between laboratories. How-
ever, measuring RNA levels of several genes in other normal and
cancer cell types (Fig. 5) suggests that this is not the case.
Moreover, analysis of complementary high-throughput data
suggests that some of these genes are likely to have periodic
expression only in normal cells and not in transformed cells, such
as HeLa. Explicitly, analysis of a large variety of expression
profile datasets revealed significant differences between cancer
and normal tissues. In normal tissues, the average expression of
genes in the common and the primary FF groups showed a
similar pattern (Fig. 4). In contrast, in cancer samples, the two
groups differ—the common genes were expressed to a level
higher than the primary FF genes (Fig. 5 and SI Figs. 6 and 7).
This suggests that some of the primary FF genes are cycling only
in a normal cell cycle and are dysregulated in transformed cells.
This conclusion is further supported because only a small portion
of the primary FF genes are found in the previously defined
‘‘cancer proliferating clusters’’ (23, 24) but are found in the
normal proliferation cluster (25).

Cellular transformation is a complex process that causes the
perturbation of many genes. It is likely that some of the genes
identified in this study as dysregulated in transformed cells
exhibit abnormal expression as a consequence of this process.
However, some of the primary FF genes may actually play causal
roles in the transformation process. Close examination of the
biological processes of some of these genes reveals their involve-
ment in processes intimately associated with cancer transforma-
tion (see Table 1 for a selected list and SI Appendix for more
details).

High-throughput studies have made significant progress in
assigning new genes to the cell cycle process. By comparing
datasets derived from normal and transformed cells, we can gain
new insights into the profound differences between these cellular
stages. Using a computational and experimental approach, we
were able to obtain high-quality data in primary cells, which led
to the identification of genes that may be dysregulated because
of cancer transformation. Additional studies of this relatively
small set of genes may lead to further characterization of their
potential role in the transformation process.

Materials and Methods
Cell Culture and Synchronization. Early passage human foreskin fibroblasts
were grown in DMEM with 10% FCS. For G0/G1 synchronization, cells were
arrested with 0.5% FCS (48 h) and then released in 10% FCS. For G1/S synchro-
nization, cells were released from the G0/G1 arrest in the presence of 2 mM
thymidine for 24 h, washing the thymidine released the cells. At the time of
release and at intervals of 2 h for the next 32 h, RNA was prepared from cells,
using RNeasy mini-kit (Qiagen). Synchrony was monitored by FACS of pro-
pidium iodide-stained cells and BrdU (50 �M; 1.5 h) incorporation.

Time-Lapse Cinematography. Cells released from synchronization were pho-
tographed every 10 min for �36 h. Upon visualization of the data, the timing
of 129 mitotic events for the thymidine block release and 74 mitotic events for
the serum starvation release were manually recorded.

Microarray. RNA was reverse transcribed, labeled, and hybridized to Af-
fymetrix microarrays U133A 2.0. The microarray data of each time course was
separately analyzed by using the AMARGE suite (39).

Synchronization Loss Model. The model assumes that cells are not completely
synchronized for two primary reasons: (i) a fraction does not reenter cell cycle,
and (ii) even for those that do reenter, different cells may progress at different
rates resulting in longer or shorter division durations. The model assumes that
cell progress rates are distributed as a Gaussian with a mean of 1 (average
time). The model has five parameters: percentage of cells reentering cell cycle,
three parameters for duration of the three FACS measured phases (G1, S and
G2/M), and a parameter for the variance of the progress rate Gaussian. Using
FACS, we learned the parameters of the model. These parameters are used for
the correction and for the deconvolution discussed below. The parameters
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Fig. 5. Expression in cancer tissues. (a) The average gene expression level is
diagrammed for the common and primary FF groups in normal arrested
IMR-90 primary fibroblasts (red, the same data as in Fig. 4b) and fibrosarcoma
(26) (green). Significant (P � 0.0007; paired t test) difference between the
normal and the cancer samples was observed only for the common group. (b)
Expression data from a variety of tissues and cell lines (27) were averaged
according to three categories—normal quiescent samples (such as lung, liver,
and heart), normal proliferating samples (such as testis, thymus, and bone
marrow), and cancer samples. The average expression of genes in the common
(orange) and primary FF (yellow) groups is shown. Note that a significant
difference (P � 0.0002; t test) between the expression behaviors of the two
groups is observed only when considering cancer cells. (c and d) RNA levels of
genes from the primary FF (c) and common (d) groups were measured in
normal primary endothelial cells, HUVECs (Pr), and a fibrosarcoma cancer cell
line, HT1080 (Ca), by semiquantitative RT-PCR at several cell cycle stages (SI
Appendix). The level of expression at G1/S and G2/M for each gene is presented
relative to its expression at G1 after normalizing for GAPDH. The averages and
the standard deviations (error bars) of duplicate measurements are shown.
The predicted peak of expression of each gene is G1/S for RBL1, C1ORF73, and
CYCLINE1; G2 for FYN; G2/M for PER2, WHSC1, and C17ORF41; and M for
CYCLINB1.

Table 1. Cycling genes

Gene Phase Function

Role in
cancer,
ref(s).

FANCL G1/S DNA repair 29
MRE11A G2/M DNA repair 29
BLM G1/S DNA repair 29
FYN* G2 Oncogene 30
BTG1 G2 Antiproliferation 31
DLEU2 G2/M Putative tumor suppressor 32
ING2 G1/S Chromatin 33
HOXA9 M/G1 Transcription 34, 35
PER2* G2/M Circadian clock 36
WHSC1* G2/M Chromatin 37
RBL1* G1/S Cell cycle 38

*Experimentally confirmed (Fig. 5).
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learned for our model were further validated by using time-lapse cinematog-
raphy. See SI Methods for details.

Correcting for Partial Reentry. After normalization, expression data were
corrected for the percentage of cells reentering cell cycle. This percentage was
determined in our model, using FACS as discussed above. Let Y0 be the
measured expression of a gene in time point 0 (before release, G0) and Yt be
the measured expression in time point t. If the fraction of cells entering the
cell cycle is P, then the measured value at time t is from a mixture of cells, P of
which are cycling and the rest are not. This can be formally stated as follows:
Yt � PCt � (1 � P)Y0.

From this equation, we can derive the expression value for the cycling cells,
Ct, which is used in subsequent analysis. We next computed log ratios, using
duplicate measurements of unsynchronized populations.

Deconvolving Expression Data. Using the learned synchronization loss model,
the corrected expression data were deconvolved. The goal of a deconvolution
algorithm is to obtain the actual expression value for each time point from
measurements of cells that are distributed around that time point. The
deconvolution method uses continuous representation to determine the
underlying expression values. See Fig. 2a and SI Appendix for more details and
a discussion of relative peak heights.

Scoring Deconvolved Expression Profiles. The resulting expression profiles
were scored by using Fourier transform (4). To determine a score cutoff, we
randomly permuted both datasets and repeated the above steps for each of
these (random) datasets. Similarly, we have randomized two datasets from
ref. 16 (the T-T3 and the T-N datasets) that showed high levels of synchroni-
zation (40). Using scores from the randomized datasets, we have determined
a cutoff score. A gene was included in the resulting cycling lists (common,
primary FF, and HeLa) if it passed this score for at least two of the datasets.
Note that the primary FF group also contains 35 genes that were not measured
in the Whitfield experiment (16). Based on the randomization analysis, the
false discovery rate was 1% for genes identified as primary FF or HeLa and 6%
for genes identified as common. See SI Appendix for a detailed discussion
addressing (i) potential synchronization artifacts, (ii) the specificity and sen-

sitivity of the deconvolution method, and (iii) the improvement in data
analysis achieved by the deconvolution step.

Phase Assignment. Genes were assigned to phases by computing their corre-
lation with previously annotated cell cycle genes, as described in ref. 16. Six
genes from a list of known cell cycle genes (16) were used (SI Table 4). We
computed the correlation of each of the predicted cycling genes and the
averages of the known phase genes and assigned the gene to the phase with
the highest correlation. This process was repeated for both datasets. For 56%
of the genes, the two datasets agreed on the phase assignment. For the
majority of the rest, they were assigned to two consecutive phases (such as to
G2/M in one and M/G1 in the second). In such cases, we used the assignment
from the dataset in which this gene scored higher.

Expression Data Analysis. Data were downloaded from Gene Expression Om-
nibus database (accession nos. GSE2487, GSE4888, GDS426, GDS1209, and
GDS181) or obtained from the researchers (20). Each experiment was normal-
ized by the average expression in the experiment. Multiple experiments of the
same type were combined. Significant differences between groups were
assessed by t test. The tumor proliferation clusters of breast (23) and lympho-
mas (24) were combined and the overlap with the common and primary FF
groups was determined. The rank statistics is described in the SI Appendix.

Statistical Analysis of GO and Motif Enrichment. GO annotation enrichment
was calculated by using the STEM program (41), and the reported hypergeo-
metric P values were corrected for multiple hypothesis, using randomization.
Motifs enrichment was determined by the PRIMA software (17).
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